Signal Propagation

Signal Propagation

When we refer to signal propagation, we are talking about the radio signal getting from one place to another, presumably from the station’s transmitting antenna to the receiver’s antenna. Signals at VHF and UHF frequencies can be propagated by a variety of means or “modes”. Depending on the particular mode that is dominating at the time of reception, the distances covered by VHF and UHF signals can extend hundreds or even thousands of miles.


Signal Propagation or Radio propagation is the behaviour of radio waves as they travel, or are propagated, from one point to another, or into various parts of the atmosphere.[1] As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering.[2] Understanding the effects of varying conditions on radio propagation has many practical applications, from choosing frequencies for international shortwave broadcasters, to designing reliable mobile telephone systems, to radio navigation, to the operation of radar systems.


Several different types of propagation are used in practical radio transmission systems. Line-of-sight propagation means radio waves which travel in a straight line from the transmitting antenna to the receiving antenna. Line of sight transmission is used to medium-range radio transmissions such as cell phones, cordless phones, walkie-talkies, wireless networks, FM radio and television broadcasting and radar, and satellite communication, such as satellite television. Line-of-sight transmission on the surface of the Earth is limited to the distance to the visual horizon, which depends on the height of transmitting and receiving antennas. It is the only propagation method possible at microwave frequencies and above. At microwave frequencies, moisture in the atmosphere (rain fade) can degrade transmission.


At lower frequencies in the MF, LF, and VLF bands, due to diffraction radio waves can bend over obstacles like hills, and travel beyond the horizon as surface waves which follow the contour of the Earth. These are called ground waves. AM broadcasting stations use ground waves to cover their listening areas. As the frequency gets lower, the attenuation with distance decreases, so very low frequency (VLF) and extremely low frequency (ELF) ground waves can be used to communicate worldwide. VLF and ELF waves can penetrate significant distances through water and earth, and these frequencies are used for mine communication and military communication with submerged submarines.


See Tropospheric Ducting

« Back to Glossary Index